Search results
Results from the WOW.Com Content Network
The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ ( r ) = ρ 0 − ( ρ 0 − ρ 1 ) r / R , and the ...
Earth's magnetic field, also known as the geomagnetic field, ... By comparison, a strong refrigerator magnet has a field of about 10,000 μT (100 G). [15]
The average magnetic field strength in Earth's outer core is estimated to be 2.5 millitesla, 50 times stronger than the magnetic field at the surface. [9] [10] As Earth's core cools, the liquid at the inner core boundary freezes, causing the solid inner core to grow at the expense of the outer core, at an estimated rate of 1 mm per year.
Illustration of Earth's cutaway, not to scale Depth [129] (km) ... This is the maximum distance at which Earth's gravitational influence is stronger than that of the ...
The transition between the inner core and outer core is located approximately 5,150 km (3,200 mi) beneath Earth's surface. Earth's inner core is the innermost geologic layer of the planet Earth. It is primarily a solid ball with a radius of about 1,220 km (760 mi), which is about 19% of Earth's radius [0.7% of volume] or 70% of the Moon's radius.
The core–mantle boundary (CMB) of Earth lies between the planet's silicate mantle and its liquid iron–nickel outer core, at a depth of 2,891 km (1,796 mi) below Earth's surface. The boundary is observed via the discontinuity in seismic wave velocities at that depth due to the differences between the acoustic impedances of the solid mantle ...
Earth’s inner core, a red-hot ball of iron 1,800 miles below our feet, stopped spinning recently, and it may now be reversing directions, according to an analysis of seismic activity.
Study of Earth's magnetosphere began in 1600, when William Gilbert discovered that the magnetic field on the surface of Earth resembled that of a terrella, a small, magnetized sphere. In the 1940s, Walter M. Elsasser proposed the model of dynamo theory, which attributes Earth's magnetic field to the motion of Earth's iron outer core.