Search results
Results from the WOW.Com Content Network
Material theory (or more formally the mathematical theory of inventory and production) is the sub-specialty within operations research and operations management that is concerned with the design of production/inventory systems to minimize costs: it studies the decisions faced by firms and the military in connection with manufacturing, warehousing, supply chains, spare part allocation and so on ...
Google Sheets is a spreadsheet application and part of the free, web-based Google Docs Editors suite offered by Google. Google Sheets is available as a web application; a mobile app for: Android, iOS, and as a desktop application on Google's ChromeOS. The app is compatible with Microsoft Excel file formats. [5]
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]
The above algorithm can be used in general to find the dependence relations between any set of vectors, and to pick out a basis from any spanning set. Also finding a basis for the column space of A is equivalent to finding a basis for the row space of the transpose matrix A T.
Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA T will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of A. An orthogonal matrix is the real specialization of a unitary matrix, and thus always a normal matrix.
Vectorization is a unitary transformation from the space of n×n matrices with the Frobenius (or Hilbert–Schmidt) inner product to C n 2: (†) = † (), where the superscript † denotes the conjugate transpose.
where denotes the transpose of and is a fixed nonsingular, skew-symmetric matrix.This definition can be extended to matrices with entries in other fields, such as the complex numbers, finite fields, p-adic numbers, and function fields.
A system of linear equations is said to be in row echelon form if its augmented matrix is in row echelon form. Similarly, a system of linear equations is said to be in reduced row echelon form or in canonical form if its augmented matrix is in reduced row echelon form. The canonical form may be viewed as an explicit solution of the linear system.