Search results
Results from the WOW.Com Content Network
The domain of definition of such a function is the set of inputs for which the algorithm does not run forever. A fundamental theorem of computability theory is that there cannot exist an algorithm that takes an arbitrary general recursive function as input and tests whether 0 belongs to its domain of definition (see Halting problem).
Also, certain non-continuous activation functions can be used to approximate a sigmoid function, which then allows the above theorem to apply to those functions. For example, the step function works. In particular, this shows that a perceptron network with a single infinitely wide hidden layer can approximate arbitrary functions.
Authors who use this formulation often speak of the choice function on A, but this is a slightly different notion of choice function. Its domain is the power set of A (with the empty set removed), and so makes sense for any set A , whereas with the definition used elsewhere in this article, the domain of a choice function on a collection of ...
Similarly, any complex-valued function f on an arbitrary set X (is isomorphic to, and therefore, in that sense, it) can be considered as an ordered pair of two real-valued functions: (Re f, Im f) or, alternatively, as a vector-valued function from X into .
A particular choice of the scalar and vector potentials is a gauge (more precisely, gauge potential) and a scalar function ψ used to change the gauge is called a gauge function. [citation needed] The existence of arbitrary numbers of gauge functions ψ(r, t) corresponds to the U(1) gauge freedom of this theory. Gauge fixing can be done in many ...
where is an arbitrary function. [3] In the case of two goods this function could be, for example, u ( x , y ) = x + y . {\displaystyle u\left(x,y\right)=x+{\sqrt {y}}.} The quasilinear form is special in that the demand functions for all but one of the consumption goods depend only on the prices and not on the income.
In computability theory, a primitive recursive function is, roughly speaking, a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop is fixed before entering the loop).
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.