Search results
Results from the WOW.Com Content Network
It is an active pump that generates a proton concentration gradient across the inner mitochondrial membrane, because there are more protons outside the matrix than inside. The difference in pH and electric charge (ignoring differences in buffer capacity) creates an electrochemical potential difference that works similar to that of a battery or ...
Ions travel across cell membranes through channels, pumps or transporters. In channels, they move down an electrochemical gradient to produce electrical signals. Pumps maintain electrochemical gradients. The main type of pump is the Na/K pump. It moves 3 sodium ions out of a cell and 2 potassium ions into a cell.
Diffusion vs. Transport. In biology, an ion transporter is a transmembrane protein that moves ions (or other small molecules) across a biological membrane to accomplish many different biological functions, including cellular communication, maintaining homeostasis, energy production, etc. [1] There are different types of transporters including pumps, uniporters, antiporters, and symporters.
Quizlet was founded in October 2005 by Andrew Sutherland, who at the time was a 15-year old student, [2] and released to the public in January 2007. [3] Quizlet's primary products include digital flash cards, matching games, practice electronic assessments, and live quizzes. In 2017, 1 in 2 high school students used Quizlet. [4]
The sodium–potassium pump (sodium–potassium adenosine triphosphatase, also known as Na + /K +-ATPase, Na + /K + pump, or sodium–potassium ATPase) is an enzyme (an electrogenic transmembrane ATPase) found in the membrane of all animal cells. It performs several functions in cell physiology.
The skeletal muscle pump. The skeletal muscle pump or musculovenous pump is a collection of skeletal muscles that aid the heart in the circulation of blood. It is especially important in increasing venous return to the heart, [1] but may also play a role in arterial blood flow.
The gross anatomy of a muscle is the most important indicator of its role in the body. One particularly important aspect of gross anatomy of muscles is pennation or lack thereof. In most muscles, all the fibers are oriented in the same direction, running in a line from the origin to the insertion.
Then the Na/K-ATPase will pump 3 Na out into the peritubular fluid and 2 K into the cell on the non-lumen side of the cell. This gives the lumen of the fluid in the loop a positive charge in comparison and creates a Na concentration gradient, which both push more Na into the cell via the Na–H antiporter .