enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    For example, the Schwarzschild radius r s of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s /r is roughly 4 parts in a

  3. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    The dot planimeter is physical device for estimating the area of shapes based on the same principle. It consists of a square grid of dots, printed on a transparent sheet; the area of a shape can be estimated as the product of the number of dots in the shape with the area of a grid square. [8]

  4. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    Even after such symmetry reductions, the reduced system of equations is often difficult to solve. For example, the Ernst equation is a nonlinear partial differential equation somewhat resembling the nonlinear Schrödinger equation (NLS). But recall that the conformal group on Minkowski spacetime is the symmetry group of the Maxwell equations.

  5. Tolman–Oppenheimer–Volkoff equation - Wikipedia

    en.wikipedia.org/wiki/Tolman–Oppenheimer...

    [4] [5] The form of the equation given here was derived by J. Robert Oppenheimer and George Volkoff in their 1939 paper, "On Massive Neutron Cores". [1] In this paper, the equation of state for a degenerate Fermi gas of neutrons was used to calculate an upper limit of ~0.7 solar masses for the gravitational mass of a neutron star. Since this ...

  6. Classical central-force problem - Wikipedia

    en.wikipedia.org/wiki/Classical_central-force...

    In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field.A central force is a force (possibly negative) that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center.

  7. n-body problem - Wikipedia

    en.wikipedia.org/wiki/N-body_problem

    The equation α + ⁠ η / r 3 ⁠ r = 0 is the fundamental differential equation for the two-body problem Bernoulli solved in 1734. Notice for this approach forces have to be determined first, then the equation of motion resolved. This differential equation has elliptic, or parabolic or hyperbolic solutions. [23] [24] [25]

  8. Solving the geodesic equations - Wikipedia

    en.wikipedia.org/wiki/Solving_the_geodesic_equations

    Solving the geodesic equations is a procedure used in mathematics, particularly Riemannian geometry, and in physics, particularly in general relativity, that results in obtaining geodesics. Physically, these represent the paths of (usually ideal) particles with no proper acceleration , their motion satisfying the geodesic equations.

  9. Schwarzschild geodesics - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_geodesics

    For example, the Schwarzschild radius of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s r {\textstyle {\frac {r_{\text{s}}}{r}}} is roughly 4 ...