Search results
Results from the WOW.Com Content Network
m is the mass of the substance produced at the electrode (in grams), Q is the total electric charge that passed through the solution (in coulombs), n is the valence number of the substance as an ion in solution (electrons per ion), M is the molar mass of the substance (in grams per mole), F is Faraday's constant (96485 coulombs per mole).
In electrochemistry, the electrochemical potential of electrons (or any other species) is the total potential, including both the (internal, nonelectrical) chemical potential and the electric potential, and is by definition constant across a device in equilibrium, whereas the chemical potential of electrons is equal to the electrochemical ...
The international pictogram for oxidizing chemicals. Dangerous goods label for oxidizing agents. An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent (called the reductant, reducer, or electron donor).
A third example is illustrated by the chemical reaction of dissociation of a weak acid HA (such as acetic acid, A = CH 3 COO −): HA ⇌ H + + A −. Vinegar contains acetic acid. When acid molecules dissociate, the concentration of the undissociated acid molecules (HA) decreases and the concentrations of the product ions (H + and A −) increase.
The purpose of the divided cell is to permit the diffusion of ions while restricting the flow of the products and reactants. This separation simplifies workup. An example of a reaction requiring a divided cell is the reduction of nitrobenzene to phenylhydroxylamine, where the latter chemical is susceptible to oxidation at the anode.
Nanoelectrochemistry is a branch of electrochemistry that investigates the electrical and electrochemical properties of materials at the nanometer size regime. Nanoelectrochemistry plays significant role in the fabrication of various sensors, and devices for detecting molecules at very low concentrations.
Physical chemistry, in contrast to chemical physics, is predominantly (but not always) a supra-molecular science, as the majority of the principles on which it was founded relate to the bulk rather than the molecular or atomic structure alone (for example, chemical equilibrium and colloids).
Pauling invoked the principle of electroneutrality in a 1952 paper to suggest that pi bonding is present, for example, in molecules with 4 Si-O bonds. [8] The oxygen atoms in such molecules would form polar covalent bonds with the silicon atom because their electronegativity (electron withdrawing power) was higher than that of silicon.