Search results
Results from the WOW.Com Content Network
Each row shows the state evolving until it repeats. The top row shows a generator with m = 9, a = 2, c = 0, and a seed of 1, which produces a cycle of length 6. The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8].
Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]
The code generated by H is called the dual code of C. It can be verified that G is a matrix, while H is a () matrix. Linearity guarantees that the minimum Hamming distance d between a codeword c 0 and any of the other codewords c ≠ c 0 is independent of c 0. This follows from the property that the difference c − c 0 of two codewords in C is ...
The MIXMAX generator is a family of pseudorandom number generators (PRNG) and is based on Anosov C-systems (Anosov diffeomorphism) and Kolmogorov K-systems (Kolmogorov automorphism). It was introduced in a 1986 preprint by G. Savvidy and N. Ter-Arutyunyan-Savvidy and published in 1991.
A multidimensional parity-check code (MDPC) is a type of error-correcting code that generalizes two-dimensional parity checks to higher dimensions. It was developed as an extension of simple parity check methods used in magnetic recording systems and radiation-hardened memory designs .
A maximum length sequence (MLS) is a type of pseudorandom binary sequence.. They are bit sequences generated using maximal linear-feedback shift registers and are so called because they are periodic and reproduce every binary sequence (except the zero vector) that can be represented by the shift registers (i.e., for length-m registers they produce a sequence of length 2 m − 1).
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
and a carry c r−1 < a. Although the theory of MWC generators permits a > b, a is almost always chosen smaller for convenience of implementation. The state transformation function of an MWC generator is one step of Montgomery reduction modulo p. The state is a large integer with most significant word c n−1 and least significant word x n−r.