Search results
Results from the WOW.Com Content Network
Given the binary nature of classification, a natural selection for a loss function (assuming equal cost for false positives and false negatives) would be the 0-1 loss function (0–1 indicator function), which takes the value of 0 if the predicted classification equals that of the true class or a 1 if the predicted classification does not match ...
Often, categorical and ordinal data are grouped together, and this is also the case for integer-valued and real-valued data. Many algorithms work only in terms of categorical data and require that real-valued or integer-valued data be discretized into groups (e.g., less than 5, between 5 and 10, or greater than 10).
In contrast, partial function application refers to the process of fixing a number of arguments to a function, producing another function of smaller arity. Given the definition of f {\displaystyle f} above, we might fix (or 'bind') the first argument, producing a function of type partial ( f ) : ( Y × Z ) → N {\displaystyle {\text{partial ...
Kernel functions have been introduced for sequence data, graphs, text, images, as well as vectors. Algorithms capable of operating with kernels include the kernel perceptron , support-vector machines (SVM), Gaussian processes , principal components analysis (PCA), canonical correlation analysis , ridge regression , spectral clustering , linear ...
Python uses the + operator for string concatenation. Python uses the * operator for duplicating a string a specified number of times. The @ infix operator is intended to be used by libraries such as NumPy for matrix multiplication. [104] [105] The syntax :=, called the "walrus operator", was introduced in Python 3.8. It assigns values to ...
Dummy variables are commonly used in regression analysis to represent categorical variables that have more than two levels, such as education level or occupation. In this case, multiple dummy variables would be created to represent each level of the variable, and only one dummy variable would take on a value of 1 for each observation.
A common special case is the symmetric Dirichlet distribution, where all of the elements making up the parameter vector have the same value. The symmetric case might be useful, for example, when a Dirichlet prior over components is called for, but there is no prior knowledge favoring one component over another.
There are multiple definitions of DisCoCat in the literature, depending on the choice made for the compositional aspect of the model. The common denominator between all the existent versions, however, always involves a categorical definition of DisCoCat as a structure-preserving functor from a category of grammar to a category of semantics, which usually encodes the distributional hypothesis.