Search results
Results from the WOW.Com Content Network
The purpose of the proof is not primarily to convince its readers that 22 / 7 (or 3 + 1 / 7 ) is indeed bigger than π. Systematic methods of computing the value of π exist. If one knows that π is approximately 3.14159, then it trivially follows that π < 22 / 7 , which is approximately 3.142857.
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".
For example, to change 1 / 4 to a decimal expression, divide 1 by 4 (" 4 into 1 "), to obtain exactly 0.25. To change 1 / 3 to a decimal expression, divide 1... by 3 (" 3 into 1... "), and stop when the desired precision is obtained, e.g., at four places after the decimal separator (ten-thousandths) as 0.3333 .
The approximation 22/7 has the same three correct decimal digits but has 10 correct binary digits. ... to round 1.25 to 2 significant figures: ... decimal places 6 12 ...
Pi Approximation Day is observed on July 22 (22/7 in the day/month date format), since the fraction 22 ⁄ 7 is a common approximation of π, which is accurate to two decimal places and dates from Archimedes. [33] In Indonesia, a country that uses the DD/MM/YYYY date format, some people celebrate Pi Day every July 22. [34]
[6] [2] [7] In some specialized contexts, the word decimal is instead used for this purpose (such as in International Civil Aviation Organization-regulated air traffic control communications). In mathematics, the decimal separator is a type of radix point, a term that also applies to number systems with bases other than ten.
Decimals may sometimes be identified by a decimal separator (usually "." or "," as in 25.9703 or 3,1415). [3] Decimal may also refer specifically to the digits after the decimal separator, such as in "3.14 is the approximation of π to two decimals". Zero-digits after a decimal separator serve the purpose of signifying the precision of a value.
He also gave two other approximations of π: π ≈ 22 ⁄ 7 and π ≈ 355 ⁄ 113, which are not as accurate as his decimal result. The latter fraction is the best possible rational approximation of π using fewer than five decimal digits in the numerator and denominator. Zu Chongzhi's results surpass the accuracy reached in Hellenistic ...