enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. No free lunch in search and optimization - Wikipedia

    en.wikipedia.org/wiki/No_free_lunch_in_search...

    A colourful way of describing such a circumstance, introduced by David Wolpert and William G. Macready in connection with the problems of search [1] and optimization, [2] is to say that there is no free lunch. Wolpert had previously derived no free lunch theorems for machine learning (statistical inference). [3]

  3. No free lunch theorem - Wikipedia

    en.wikipedia.org/wiki/No_free_lunch_theorem

    Wolpert had previously derived no free lunch theorems for machine learning (statistical inference). [2] In 2005, Wolpert and Macready themselves indicated that the first theorem in their paper "state[s] that any two optimization algorithms are equivalent when their performance is averaged across all possible problems". [3]

  4. Proximal gradient methods for learning - Wikipedia

    en.wikipedia.org/wiki/Proximal_gradient_methods...

    Proximal gradient methods are applicable in a wide variety of scenarios for solving convex optimization problems of the form + (),where is convex and differentiable with Lipschitz continuous gradient, is a convex, lower semicontinuous function which is possibly nondifferentiable, and is some set, typically a Hilbert space.

  5. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    From a Bayesian point of view, many regularization techniques correspond to imposing certain prior distributions on model parameters. [6] Regularization can serve multiple purposes, including learning simpler models, inducing models to be sparse and introducing group structure [clarification needed] into the learning problem.

  6. Fine-tuning (deep learning) - Wikipedia

    en.wikipedia.org/wiki/Fine-tuning_(deep_learning)

    In deep learning, fine-tuning is an approach to transfer learning in which the parameters of a pre-trained neural network model are trained on new data. [1] Fine-tuning can be done on the entire neural network, or on only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen" (i.e., not changed during backpropagation). [2]

  7. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    One application of machine learning is to perform regression from training data to build a correlation. In this example, deep learning generates a model from training data that is generated with the function ⁡ (). An artificial neural network with three layers is used for this example. The first layer is linear, the second layer has a ...

  8. Information gain (decision tree) - Wikipedia

    en.wikipedia.org/wiki/Information_gain_(decision...

    In machine learning, this concept can be used to define a preferred sequence of attributes to investigate to most rapidly narrow down the state of X. Such a sequence (which depends on the outcome of the investigation of previous attributes at each stage) is called a decision tree , and when applied in the area of machine learning is known as ...

  9. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".