Search results
Results from the WOW.Com Content Network
Probability: Theory and Examples (PDF). Cambridge Series in Statistical and Probabilistic Mathematics. Vol. 49 (5th ed.). Cambridge New York, NY: Cambridge University Press. ISBN 978-1-108-47368-2. OCLC 1100115281
Math on Trial consists of ten chapters, each outlining a particular mathematical fallacy, presenting a case study of a trial in which it arose, and then detailing the effects of the fallacy on the case outcome [1] [2] The cases range over a wide range of years and locations, and are roughly ordered by the sophistication of the reasoning needed to resolve them. [3]
The key chapter is Chapter 32 'The Inductive Use of Statistical Frequencies for the Determination of Probability a posteriori - The Method of Lexis'. After citing Lexis' observations on both 'subnormal' and 'supernormal' dispersion, he notes that 'a supernormal dispersion [can] also arise out of connexite or organic connection between the ...
This is the same as saying that the probability of event {1,2,3,4,6} is 5/6. This event encompasses the possibility of any number except five being rolled. The mutually exclusive event {5} has a probability of 1/6, and the event {1,2,3,4,5,6} has a probability of 1, that is, absolute certainty.
The sixth chapter of the book moves from probability theory to game theory, including material on tic-tac-toe, matrix representations of zero-sum games, nonzero-sum games such as the prisoner's dilemma, the concept of a Nash equilibrium, game trees, and the minimax method used by computers to play two-player strategy games.
The certainty that is adopted can be described in terms of a numerical measure, and this number, between 0 and 1 (where 0 indicates impossibility and 1 indicates certainty) is called the probability. Probability theory is used extensively in statistics , mathematics , science and philosophy to draw conclusions about the likelihood of potential ...
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
Epistemic or subjective probability is sometimes called credence, as opposed to the term chance for a propensity probability. Some examples of epistemic probability are to assign a probability to the proposition that a proposed law of physics is true or to determine how probable it is that a suspect committed a crime, based on the evidence ...