enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1.

  3. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    In mathematics, Fourier analysis (/ ˈ f ʊr i eɪ,-i ər /) [1] is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric ...

  4. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Fourier series § Definition. The study of the convergence of Fourier series focus on the behaviors of the partial sums , which means studying the behavior of the sum as more and more terms from the series are ...

  5. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    Left: A continuous function (top) and its Fourier transform (bottom). Center-left: Periodic summation of the original function (top). Fourier transform (bottom) is zero except at discrete points. The inverse transform is a sum of sinusoids called Fourier series. Center-right: Original function is discretized (multiplied by a Dirac comb) (top).

  6. Dirichlet kernel - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_kernel

    The convolution of D n (x) with any function f of period 2 π is the nth-degree Fourier series approximation to f, i.e., we have () = () = = ^ (), where ^ = is the k th Fourier coefficient of f. This implies that in order to study convergence of Fourier series it is enough to study properties of the Dirichlet kernel.

  7. Dirac comb - Wikipedia

    en.wikipedia.org/wiki/Dirac_comb

    The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula ⁡ := = for some given period . [1]

  8. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    Therefore, the Fourier transform goes from one space of functions to a different space of functions: functions which have a different domain of definition. In general, ξ {\displaystyle \xi } must always be taken to be a linear form on the space of its domain, which is to say that the second real line is the dual space of the first real line.

  9. Fokker–Planck equation - Wikipedia

    en.wikipedia.org/wiki/Fokker–Planck_equation

    A solution to the one-dimensional Fokker–Planck equation, with both the drift and the diffusion term. In this case the initial condition is a Dirac delta function centered away from zero velocity. Over time the distribution widens due to random impulses.