enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parity-check matrix - Wikipedia

    en.wikipedia.org/wiki/Parity-check_matrix

    Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]

  3. Binary Goppa code - Wikipedia

    en.wikipedia.org/wiki/Binary_Goppa_code

    For practical purposes, parity-check matrix of a binary Goppa code is usually converted to a more computer-friendly binary form by a trace construction, that converts the -by-matrix over () to a -by-binary matrix by writing polynomial coefficients of () elements on successive rows.

  4. Parity learning - Wikipedia

    en.wikipedia.org/wiki/Parity_learning

    Parity learning is a problem in machine learning. An algorithm that solves this problem must find a function ƒ, given some samples (x, ƒ(x)) and the assurance that ƒ computes the parity of bits at some fixed locations. The samples are generated using some distribution over the input.

  5. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    GEKKO works on all platforms and with Python 2.7 and 3+. By default, the problem is sent to a public server where the solution is computed and returned to Python. There are Windows, MacOS, Linux, and ARM (Raspberry Pi) processor options to solve without an Internet connection.

  6. Low-density parity-check code - Wikipedia

    en.wikipedia.org/wiki/Low-density_parity-check_code

    The constituent encoders are typically accumulators and each accumulator is used to generate a parity symbol. A single copy of the original data (S 0,K-1) is transmitted with the parity bits (P) to make up the code symbols. The S bits from each constituent encoder are discarded. The parity bit may be used within another constituent code.

  7. Four-square cipher - Wikipedia

    en.wikipedia.org/wiki/Four-square_cipher

    The four-square cipher uses four 5 by 5 (5x5) matrices arranged in a square. Each of the 5 by 5 matrices contains the letters of the alphabet (usually omitting "Q" or putting both "I" and "J" in the same location to reduce the alphabet to fit).

  8. Matrix completion - Wikipedia

    en.wikipedia.org/wiki/Matrix_completion

    The high rank matrix completion in general is NP-Hard. However, with certain assumptions, some incomplete high rank matrix or even full rank matrix can be completed. Eriksson, Balzano and Nowak [10] have considered the problem of completing a matrix with the assumption that the columns of the matrix belong to a union of multiple low-rank subspaces.

  9. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In Python, the function cholesky from the numpy.linalg module performs Cholesky decomposition. In Matlab, the chol function gives the Cholesky decomposition. Note that chol uses the upper triangular factor of the input matrix by default, i.e. it computes = where is upper triangular. A flag can be passed to use the lower triangular factor instead.