enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Difference quotient - Wikipedia

    en.wikipedia.org/wiki/Difference_quotient

    The difference between two points, themselves, is known as their Delta (ΔP), as is the difference in their function result, the particular notation being determined by the direction of formation: Forward difference: ΔF(P) = F(P + ΔP) − F(P); Central difference: δF(P) = F(P + ⁠ 1 / 2 ⁠ ΔP) − F(P − ⁠ 1 / 2 ⁠ ΔP);

  3. Partial derivative - Wikipedia

    en.wikipedia.org/wiki/Partial_derivative

    Once a value of y is chosen, say a, then f(x,y) determines a function f a which traces a curve x 2 + ax + a 2 on the xz-plane: = + +. In this expression, a is a constant, not a variable, so f a is a function of only one real variable, that being x. Consequently, the definition of the derivative for a function of one variable applies:

  4. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    Thus, when one separates variables for first-order equations, one in fact moves the dx denominator of the operator to the side with the x variable, and the d(y) is left on the side with the y variable. The second-derivative operator, by analogy, breaks down as follows:

  5. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers.

  6. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  7. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    Following Goursat (1904, I, §15), for functions of more than one independent variable, = (, …,), the partial differential of y with respect to any one of the variables x 1 is the principal part of the change in y resulting from a change dx 1 in that one variable. The partial differential is therefore

  8. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Graphs of y = b x for various bases b: base 10, base e, base 2, base ⁠ 1 / 2 ⁠. Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.

  9. Matrix difference equation - Wikipedia

    en.wikipedia.org/wiki/Matrix_difference_equation

    A matrix difference equation is a difference equation in which the value of a vector (or sometimes, a matrix) of variables at one point in time is related to its own value at one or more previous points in time, using matrices. [1] [2] The order of the equation is the maximum time gap between any two indicated values of the variable vector. For ...