Search results
Results from the WOW.Com Content Network
The work per unit of charge is defined by moving a negligible test charge between two points, and is expressed as the difference in electric potential at those points. The work can be done, for example, by electrochemical devices ( electrochemical cells ) or different metals junctions [ clarification needed ] generating an electromotive force .
Alternatively, the electric potential energy of any given charge or system of charges is termed as the total work done by an external agent in bringing the charge or the system of charges from infinity to the present configuration without undergoing any acceleration.
Electric potential (also called the electric field potential, potential drop, the electrostatic potential) is defined as the amount of work/energy needed per unit of electric charge to move the charge from a reference point to a specific point in an electric field.
The work done is given by the dot product of the two vectors, where the result is a scalar. When the force F is constant and the angle θ between the force and the displacement s is also constant, then the work done is given by: = If the force is variable, then work is given by the line integral:
The electrostatic field does not contribute to the net emf around a circuit because the electrostatic portion of the electric field is conservative (i.e., the work done against the field around a closed path is zero, see Kirchhoff's voltage law, which is valid, as long as the circuit elements remain at rest and radiation is ignored [22]). That ...
In physics, a conservative force is a force with the property that the total work done by the force in moving a particle between two points is independent of the path taken. [1] Equivalently, if a particle travels in a closed loop, the total work done (the sum of the force acting along the path multiplied by the displacement ) by a conservative ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
[4]: p.711–713 If, while it is close to the positive charge, the above object is momentarily connected through a conductive path to electrical ground, which is a large reservoir of both positive and negative charges, some of the negative charges in the ground will flow into the object, under the attraction of the nearby positive charge. When ...