enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    Energy shares the same unit of measurement with work (Joules) because the energy from the object doing work is transferred to the other objects it interacts with when work is being done. [17] The work–energy principle states that an increase in the kinetic energy of a rigid body is caused by an equal amount of positive work done on the body ...

  3. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.

  4. Work (electric field) - Wikipedia

    en.wikipedia.org/wiki/Work_(electric_field)

    The work can be done, for example, by electrochemical devices (electrochemical cells) or different metals junctions [clarification needed] generating an electromotive force. Electric field work is formally equivalent to work by other force fields in physics, [1] and the formalism for electrical work is identical to that of mechanical work.

  5. Thermodynamic process - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_process

    Energy gained by the system, through work done on it, is lost to the bath, so that its temperature remains constant. An adiabatic process is a process in which there is no matter or heat transfer, because a thermally insulating wall separates the system from its surroundings. For the process to be natural, either (a) work must be done on the ...

  6. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    The work done on the system is defined and measured by changes in mechanical or quasi-mechanical variables external to the system. Physically, adiabatic transfer of energy as work requires the existence of adiabatic enclosures. For instance, in Joule's experiment, the initial system is a tank of water with a paddle wheel inside.

  7. Conservative force - Wikipedia

    en.wikipedia.org/wiki/Conservative_force

    For a proof, imagine two paths 1 and 2, both going from point A to point B. The variation of energy for the particle, taking path 1 from A to B and then path 2 backwards from B to A, is 0; thus, the work is the same in path 1 and 2, i.e., the work is independent of the path followed, as long as it goes from A to B.

  8. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    For a conservative system, the work done in moving along a path in a configuration space depends on only the endpoints of the path, so it is possible to define potential energy that is independent of the actual path taken.

  9. Adiabatic process - Wikipedia

    en.wikipedia.org/wiki/Adiabatic_process

    The other extreme kind of work is isochoric work (dV = 0), for which energy is added as work solely through friction or viscous dissipation within the system. A stirrer that transfers energy to a viscous fluid of an adiabatically isolated system with rigid walls, without phase change, will cause a rise in temperature of the fluid, but that work ...