enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Antisymmetric relation - Wikipedia

    en.wikipedia.org/wiki/Antisymmetric_relation

    A relation can be both symmetric and antisymmetric (in this case, it must be coreflexive), and there are relations which are neither symmetric nor antisymmetric (for example, the "preys on" relation on biological species). Antisymmetry is different from asymmetry: a relation is asymmetric if and only if it is antisymmetric and irreflexive.

  3. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    For example, ≥ is an antisymmetric relation; so is >, but vacuously (the condition in the definition is always false). [11] Asymmetric for all x, y ∈ X, if xRy then not yRx. A relation is asymmetric if and only if it is both antisymmetric and irreflexive. [12] For example, > is an asymmetric relation, but ≥ is not.

  4. Symmetric relation - Wikipedia

    en.wikipedia.org/wiki/Symmetric_relation

    Symmetric and antisymmetric relations By definition, a nonempty relation cannot be both symmetric and asymmetric (where if a is related to b , then b cannot be related to a (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").

  5. Homogeneous relation - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_relation

    For example, "is a blood relative of" is a symmetric relation, because x is a blood relative of y if and only if y is a blood relative of x. Antisymmetric for all x, y ∈ X, if xRy and yRx then x = y. For example, ≥ is an antisymmetric relation; so is >, but vacuously (the condition in the definition is always false). [8] Asymmetric

  6. Weak ordering - Wikipedia

    en.wikipedia.org/wiki/Weak_ordering

    For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...

  7. Asymmetric relation - Wikipedia

    en.wikipedia.org/wiki/Asymmetric_relation

    For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...

  8. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...

  9. Reflexive relation - Wikipedia

    en.wikipedia.org/wiki/Reflexive_relation

    An example of a left quasi-reflexive relation is a left Euclidean relation, which is always left quasi-reflexive but not necessarily right quasi-reflexive, and thus not necessarily quasi-reflexive. An example of a coreflexive relation is the relation on integers in which each odd number is related to itself and there are no other relations. The ...