enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Correlation - Wikipedia

    en.wikipedia.org/wiki/Correlation

    Finally, the fourth example (bottom right) shows another example when one outlier is enough to produce a high correlation coefficient, even though the relationship between the two variables is not linear. These examples indicate that the correlation coefficient, as a summary statistic, cannot replace

  3. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  4. Correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Correlation_coefficient

    A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [ a ] The variables may be two columns of a given data set of observations, often called a sample , or two components of a multivariate random variable with a known distribution .

  5. Coefficient of multiple correlation - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_multiple...

    In statistics, the coefficient of multiple correlation is a measure of how well a given variable can be predicted using a linear function of a set of other variables. It is the correlation between the variable's values and the best predictions that can be computed linearly from the predictive variables. [1]

  6. Bivariate data - Wikipedia

    en.wikipedia.org/wiki/Bivariate_data

    Correlations between the two variables are determined as strong or weak correlations and are rated on a scale of –1 to 1, where 1 is a perfect direct correlation, –1 is a perfect inverse correlation, and 0 is no correlation. In the case of long legs and long strides, there would be a strong direct correlation. [6]

  7. Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_correlation

    Notably, correlation is dimensionless while covariance is in units obtained by multiplying the units of the two variables. If Y always takes on the same values as X , we have the covariance of a variable with itself (i.e. σ X X {\displaystyle \sigma _{XX}} ), which is called the variance and is more commonly denoted as σ X 2 , {\displaystyle ...

  8. Covariance - Wikipedia

    en.wikipedia.org/wiki/Covariance

    In this case, the relationship between and is non-linear, while correlation and covariance are measures of linear dependence between two random variables. This example shows that if two random variables are uncorrelated, that does not in general imply that they are independent.

  9. Phi coefficient - Wikipedia

    en.wikipedia.org/wiki/Phi_coefficient

    In statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or r φ) is a measure of association for two binary variables.. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975.