Search results
Results from the WOW.Com Content Network
In this manner, the probabilistic convolution tree may be used to achieve a solution in sub-quadratic number of steps: each convolution can be performed in n log(n), and the initial (more numerous) merge operations use a smaller n, while the later (less numerous) operations require n on the order of W. The probabilistic convolution tree-based ...
Some features of convolution are similar to cross-correlation: for real-valued functions, of a continuous or discrete variable, convolution () differs from cross-correlation only in that either () or () is reflected about the y-axis in convolution; thus it is a cross-correlation of () and (), or () and ().
For example, when = and =, Eq.3 equals , whereas direct evaluation of Eq.1 would require up to complex multiplications per output sample, the worst case being when both and are complex-valued. Also note that for any given M , {\displaystyle M,} Eq.3 has a minimum with respect to N . {\displaystyle N.} Figure 2 is a graph of the values of N ...
For example, when = and =, Eq.3 equals , whereas direct evaluation of Eq.1 would require up to complex multiplications per output sample, the worst case being when both and are complex-valued. Also note that for any given M , {\displaystyle M,} Eq.3 has a minimum with respect to N . {\displaystyle N.} Figure 2 is a graph of the values of N ...
In order to rid the image data of the high-frequency spectral content, it can be multiplied by the frequency response of a low-pass filter, which based on the convolution theorem, is equivalent to convolving the signal in the time/spatial domain by the impulse response of the low-pass filter. Several impulse responses that do so are shown below ...
In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).
For example P(n i ≥ k), the probability that the total number of customers at service center i is greater than or equal to k, must be summed over all values of n i ≥ k and, for each such value of n i, over all possible ways the remaining N – n i customers can be distributed across the other M-1 service centers in the network.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.