Search results
Results from the WOW.Com Content Network
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
Earth's magnetic field is produced in the outer liquid part of its core due to a dynamo that produce electrical currents there. The ions and electrons of a plasma interacting with the Earth's magnetic field generally follow its magnetic field lines. These represent the force that a north magnetic pole would experience at any given point.
The magnetosphere is roughly shaped like a hemisphere on the side facing the Sun, then is drawn out in a long wake on the opposite side. The boundary of this region is called the magnetopause , and some of the particles are able to penetrate the magnetosphere through this region by partial reconnection of the magnetic field lines.
The magnetosphere contains charged particles that are trapped from the stellar wind, which then move along these field lines. As the star rotates, the magnetosphere rotates with it, dragging along the charged particles. [13] As stars emit matter with a stellar wind from the photosphere, the magnetosphere creates a torque on the ejected matter.
By mole fraction (i.e., by quantity of molecules), dry air contains 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and small amounts of other trace gases (see Composition below for more detail). Air also contains a variable amount of water vapor, on average around 1% at sea level, and 0.4% over the entire atmosphere.
A wealth of new information about Earth’s inner core has surfaced in recent months. Scientists now have evidence that the planet’s innermost layer is changing shape.
Generated by the churning molten metals in Earth’s core, the magnetosphere shields the planet from harmful solar radiation and keeps solar winds from stripping away Earth’s atmosphere.
Beneath the Earth's mantle lies the core, which is made up of two parts: the solid inner core and liquid outer core. [ 16 ] [ 17 ] Both have significant quantities of iron . The liquid outer core moves in the presence of the magnetic field and eddies are set up into the same due to the Coriolis effect . [ 18 ]