Search results
Results from the WOW.Com Content Network
An early example of a MEMS device is the resonant-gate transistor, an adaptation of the MOSFET, developed by Robert A. Wickstrom for Harvey C. Nathanson in 1965. [4] Another early example is the resonistor, an electromechanical monolithic resonator patented by Raymond J. Wilfinger between 1966 and 1971.
An example of a bio-MEMS device is this automated FISH microchip, which integrates a reagent multiplexer, a cell chamber with a thin-film heater layer, and a peristaltic pump. [1] Bio-MEMS is an abbreviation for biomedical (or biological) microelectromechanical systems.
RF MEMS components are biased electrostatically using a bipolar NRZ drive voltage, as shown in Fig. 2, in order to avoid dielectric charging [11] and to increase the lifetime of the device. Dielectric charges exert a permanent electrostatic force on the beam.
The completed MEMS devices, enclosed in small chip-level vacuum chambers, are diced from their silicon wafers, and the resonator die are stacked on CMOS die and molded into plastic packages to form oscillators. MEMS oscillators are packaged in the same factories and with the same equipment and materials that are used for standard IC packaging.
Microoptoelectromechanical systems (MOEMS), also known as optical MEMS, are integrations of mechanical, optical, and electrical systems that involve sensing or manipulating optical signals at a very small size. MOEMS includes a wide variety of devices, for example optical switch, optical cross-connect, tunable VCSEL, microbolometers.
A MEMS magnetic actuator is a device that uses the microelectromechanical systems (MEMS) to convert an electric current into a mechanical output by employing the well-known Lorentz Force Equation or the theory of Magnetism.
NEMS form the next logical miniaturization step from so-called microelectromechanical systems, or MEMS devices. NEMS typically integrate transistor-like nanoelectronics with mechanical actuators , pumps, or motors, and may thereby form physical, biological, and chemical sensors .
Today, the term MEMS in practice is used to refer to any microscopic device with a mechanical function, which can be fabricated in a batch process (for example, an array of microscopic gears fabricated on a microchip would be considered a MEMS device but a tiny laser-machined stent or watch component would not).