enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics.It states that every even natural number greater than 2 is the sum of two prime numbers.

  3. Landau's problems - Wikipedia

    en.wikipedia.org/wiki/Landau's_problems

    Goldbach's weak conjecture, every odd number greater than 5 can be expressed as the sum of three primes, is a consequence of Goldbach's conjecture. Ivan Vinogradov proved it for large enough n (Vinogradov's theorem) in 1937, [1] and Harald Helfgott extended this to a full proof of Goldbach's weak conjecture in 2013. [2] [3] [4]

  4. List of conjectures - Wikipedia

    en.wikipedia.org/wiki/List_of_conjectures

    Goldbach's conjecture: number theory: ⇒The ternary Goldbach conjecture, which was the original formulation. [8] Christian Goldbach: 5880 Gold partition conjecture [9] order theory: n/a: 25 Goldberg–Seymour conjecture: graph theory: Mark K. Goldberg and Paul Seymour: 57 Goormaghtigh conjecture: number theory: René Goormaghtigh: 14 Green's ...

  5. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    The Fermat numbers satisfy the following recurrence relations: = + = + for n ≥ 1, = + = for n ≥ 2.Each of these relations can be proved by mathematical induction.From the second equation, we can deduce Goldbach's theorem (named after Christian Goldbach): no two Fermat numbers share a common integer factor greater than 1.

  6. Conjecture - Wikipedia

    en.wikipedia.org/wiki/Conjecture

    In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. [ 1 ] [ 2 ] [ 3 ] Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem , proven in 1995 by Andrew Wiles ), have shaped much of mathematical history as new areas of mathematics are developed in ...

  7. Analytic number theory - Wikipedia

    en.wikipedia.org/wiki/Analytic_number_theory

    In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. [1] It is often said to have begun with Peter Gustav Lejeune Dirichlet 's 1837 introduction of Dirichlet L -functions to give the first proof of Dirichlet's theorem on arithmetic progressions .

  8. Waring–Goldbach problem - Wikipedia

    en.wikipedia.org/wiki/Waring–Goldbach_problem

    The Waring–Goldbach problem is a problem in additive number theory, concerning the representation of integers as sums of powers of prime numbers. It is named as a combination of Waring's problem on sums of powers of integers, and the Goldbach conjecture on sums of primes. It was initiated by Hua Luogeng [1] in 1938.

  9. Henry Pogorzelski - Wikipedia

    en.wikipedia.org/wiki/Henry_Pogorzelski

    Henry Andrew Pogorzelski (September 26, 1922 - December 30, 2015) [1] was an American mathematician of Polish descent, [2] a professor of mathematics at the University of Maine. Much of Pogorzelski's research concerns the Goldbach conjecture, the still-unsolved problem of whether every even number can be represented as a sum of two prime ...