enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    Borrowing from complex analysis, this is sometimes called an essential singularity. The possible cases at a given value for the argument are as follows. A point of continuity is a value of for which () = = (+), as one expects for a smooth function. All the values must be finite.

  3. Singular point of a curve - Wikipedia

    en.wikipedia.org/wiki/Singular_point_of_a_curve

    A curve with a triple point at the origin: x(t) = sin(2t) + cos(t), y(t) = sin(t) + cos(2t) In general, if all the terms of degree less than k are 0, and at least one term of degree k is not 0 in f, then curve is said to have a multiple point of order k or a k-ple point.

  4. Regular singular point - Wikipedia

    en.wikipedia.org/wiki/Regular_singular_point

    Point a is an ordinary point when functions p 1 (x) and p 0 (x) are analytic at x = a. Point a is a regular singular point if p 1 (x) has a pole up to order 1 at x = a and p 0 has a pole of order up to 2 at x = a. Otherwise point a is an irregular singular point.

  5. Residue (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Residue_(complex_analysis)

    Then, the residue at the point c is calculated as: ⁡ (,) = = = = using the results from contour integral of a monomial for counter clockwise contour integral around a point c. Hence, if a Laurent series representation of a function exists around c, then its residue around c is known by the coefficient of the ( z − c ) − 1 {\displaystyle ...

  6. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    The complex plane extended by a point at infinity is called the Riemann sphere. If f is a function that is meromorphic on the whole Riemann sphere, then it has a finite number of zeros and poles, and the sum of the orders of its poles equals the sum of the orders of its zeros.

  7. Isolated singularity - Wikipedia

    en.wikipedia.org/wiki/Isolated_singularity

    In complex analysis, a branch of mathematics, an isolated singularity is one that has no other singularities close to it. In other words, a complex number z 0 is an isolated singularity of a function f if there exists an open disk D centered at z 0 such that f is holomorphic on D \ {z 0}, that is, on the set obtained from D by taking z 0 out.

  8. Cusp (singularity) - Wikipedia

    en.wikipedia.org/wiki/Cusp_(singularity)

    Consider a smooth real-valued function of two variables, say f (x, y) where x and y are real numbers.So f is a function from the plane to the line. The space of all such smooth functions is acted upon by the group of diffeomorphisms of the plane and the diffeomorphisms of the line, i.e. diffeomorphic changes of coordinate in both the source and the target.

  9. Singularity theory - Wikipedia

    en.wikipedia.org/wiki/Singularity_theory

    This is another branch of singularity theory, based on earlier work of Hassler Whitney on critical points. Roughly speaking, a critical point of a smooth function is where the level set develops a singular point in the geometric sense. This theory deals with differentiable functions in general, rather than just polynomials.