Search results
Results from the WOW.Com Content Network
where a = 5(4ν + 3) / ν 2 + 1 . Using the negative case of the square root yields, after scaling variables, the first parametrization while the positive case gives the second. The substitution c = −m / ℓ 5 , e = 1 / ℓ in the Spearman–Williams parameterization allows one to not exclude the special case a = 0 ...
In the differential form formulation on arbitrary space times, F = 1 / 2 F αβ dx α ∧ dx β is the electromagnetic tensor considered as a 2-form, A = A α dx α is the potential 1-form, = is the current 3-form, d is the exterior derivative, and is the Hodge star on forms defined (up to its orientation, i.e. its sign) by the ...
The first (direct) method computes the location of a point that is a given distance and azimuth (direction) from another point. The second (inverse) method computes the geographical distance and azimuth between two given points. They have been widely used in geodesy because they are accurate to within 0.5 mm (0.020 in) on the Earth ellipsoid.
In the early 16th century, the Italian mathematician Scipione del Ferro (1465–1526) found a method for solving a class of cubic equations, namely those of the form x 3 + mx = n. In fact, all cubic equations can be reduced to this form if one allows m and n to be negative, but negative numbers were not known to him at that time. Del Ferro kept ...
By carefully writing the above equations as matrix equations, we obtain its dual problem: [15] {, () + () + (,) and by the duality theorem of linear programming, since the primal problem is feasible and bounded, so is the dual problem, and the minimum in the first problem equals the maximum in the second problem.
Galileo deduced the equation s = 1 / 2 gt 2 in his work geometrically, [4] using the Merton rule, now known as a special case of one of the equations of kinematics. Galileo was the first to show that the path of a projectile is a parabola. Galileo had an understanding of centrifugal force and gave a correct definition of momentum. This ...
For a stretched spring fixed at one end obeying Hooke's law, the elastic potential energy is = where r 2 and r 1 are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.
In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...