Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate, the binding site, and residues that catalyse a reaction of that substrate, the catalytic site.
Pepsin is inactive at pH 6.5 and above, however pepsin is not fully denatured or irreversibly inactivated until pH 8.0. [11] [15] Therefore, pepsin in solutions of up to pH 8.0 can be reactivated upon re-acidification. The stability of pepsin at high pH has significant implications on disease attributed to laryngopharyngeal reflux. Pepsin ...
Some enzymes are absolutely specific meaning that they act on only one substrate, while others show group specificity and can act on similar but not identical chemical groups such as the peptide bond in different molecules. Many enzymes have stereochemical specificity and act on one stereoisomer but not another. [3]
Exopeptidase enzymes exist in the small intestine. These enzymes have two classes: aminopeptidases are a brush border enzyme and carboxypeptidases which is from the pancreas. Aminopeptidases are enzymes that remove amino acids from the amino terminus of protein. They are present in all lifeforms and are crucial for survival since they do many ...
[1] [2] Immobilized enzymes are easily to be handled, simply separated from their products, and can be reused. [3] Enzymes are bio-catalysts which play an essential role in the enhancement of chemical reactions in cells without being persistently modified, wasted, nor resulting in the loss of equilibrium of chemical reactions.
Esterases cleave ester bonds in lipids and phosphatases cleave phosphate groups off molecules. An example of crucial esterase is acetylcholine esterase , which assists in transforming the neuron impulse into the acetate group after the hydrolase breaks the acetylcholine into choline and acetic acid . [ 1 ]
A reaction that illustrates an enzyme cleaving a specific bond of the reactant in order to create two products Bond specificity, unlike group specificity, recognizes particular chemical bond types. This differs from group specificity, as it is not reliant on the presence of particular functional groups in order to catalyze a particular reaction ...