enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lower critical solution temperature - Wikipedia

    en.wikipedia.org/wiki/Lower_critical_solution...

    A key physical factor which distinguishes the LCST from other mixture behavior is that the LCST phase separation is driven by unfavorable entropy of mixing. [18] Since mixing of the two phases is spontaneous below the LCST and not above, the Gibbs free energy change (ΔG) for the mixing of these two phases is negative below the LCST and positive above, and the entropy change ΔS = – (dΔG/dT ...

  3. Flory–Huggins solution theory - Wikipedia

    en.wikipedia.org/wiki/Flory–Huggins_solution...

    Flory–Huggins solution theory is a lattice model of the thermodynamics of polymer solutions which takes account of the great dissimilarity in molecular sizes in adapting the usual expression for the entropy of mixing. The result is an equation for the Gibbs free energy change for mixing a polymer with a solvent. Although it makes simplifying ...

  4. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    Owing to these early developments, the typical example of entropy change ΔS is that associated with phase change. In solids, for example, which are typically ordered on the molecular scale, usually have smaller entropy than liquids, and liquids have smaller entropy than gases and colder gases have smaller entropy than hotter gases.

  5. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    Since an entropy is a state function, the entropy change of the system for an irreversible path is the same as for a reversible path between the same two states. [22] However, the heat transferred to or from the surroundings is different as well as its entropy change. We can calculate the change of entropy only by integrating the above formula.

  6. Radical polymerization - Wikipedia

    en.wikipedia.org/wiki/Radical_polymerization

    As a result, the entropy decreases in the system, ΔS p < 0 for nearly all polymerization processes. Since depolymerization is almost always entropically favored, the ΔH p must then be sufficiently negative to compensate for the unfavorable entropic term. Only then will polymerization be thermodynamically favored by the resulting negative ΔG p.

  7. Temperature-responsive polymer - Wikipedia

    en.wikipedia.org/wiki/Temperature-responsive_polymer

    Polymers dissolve in a solvent when the Gibbs energy of the system decreases, i.e., the change of Gibbs energy (ΔG) is negative. From the known Legendre transformation of the Gibbs–Helmholtz equation it follows that ΔG is determined by the enthalpy of mixing (ΔH) and entropy of mixing (ΔS).

  8. Ceiling temperature - Wikipedia

    en.wikipedia.org/wiki/Ceiling_temperature

    A system has a lower entropy when there are few objects in the system and has a higher entropy when there are many objects in the system. Because the process of depolymerization involves a polymer being broken down into its monomers, depolymerization increases entropy. In the Gibbs free energy equation, the entropy term is negative.

  9. Third law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Third_law_of_thermodynamics

    At absolute zero (zero kelvins) the system must be in a state with the minimum possible energy. Entropy is related to the number of accessible microstates, and there is typically one unique state (called the ground state) with minimum energy. [1] In such a case, the entropy at absolute zero will be exactly zero.