enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fixed-point theorems in infinite-dimensional spaces - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_theorems_in...

    Schauder fixed-point theorem: Let C be a nonempty closed convex subset of a Banach space V. If f : C → C is continuous with a compact image, then f has a fixed point. Tikhonov (Tychonoff) fixed-point theorem: Let V be a locally convex topological vector space. For any nonempty compact convex set X in V, any continuous function f : X → X has ...

  3. Schauder fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Schauder_fixed-point_theorem

    The Schauder fixed-point theorem is an extension of the Brouwer fixed-point theorem to topological vector spaces, which may be of infinite dimension.It asserts that if is a nonempty convex closed subset of a Hausdorff topological vector space and is a continuous mapping of into itself such that () is contained in a compact subset of , then has a fixed point.

  4. Markov–Kakutani fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Markov–Kakutani_fixed...

    In mathematics, the Markov–Kakutani fixed-point theorem, named after Andrey Markov and Shizuo Kakutani, states that a commuting family of continuous affine self-mappings of a compact convex subset in a locally convex topological vector space has a common fixed point. This theorem is a key tool in one of the quickest proofs of amenability of ...

  5. Kakutani fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Kakutani_fixed-point_theorem

    The Kakutani fixed point theorem is a generalization of the Brouwer fixed point theorem. The Brouwer fixed point theorem is a fundamental result in topology which proves the existence of fixed points for continuous functions defined on compact, convex subsets of Euclidean spaces. Kakutani's theorem extends this to set-valued functions.

  6. Fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_theorem

    The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. [2]By contrast, the Brouwer fixed-point theorem (1911) is a non-constructive result: it says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, [3] but it doesn ...

  7. Brouwer fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Brouwer_fixed-point_theorem

    The Kakutani fixed point theorem generalizes the Brouwer fixed-point theorem in a different direction: it stays in R n, but considers upper hemi-continuous set-valued functions (functions that assign to each point of the set a subset of the set). It also requires compactness and convexity of the set.

  8. Browder fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Browder_fixed-point_theorem

    The Browder fixed-point theorem is a refinement of the Banach fixed-point theorem for uniformly convex Banach spaces.It asserts that if is a nonempty convex closed bounded set in uniformly convex Banach space and is a mapping of into itself such that ‖ () ‖ ‖ ‖ (i.e. is non-expansive), then has a fixed point.

  9. Ryll-Nardzewski fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Ryll-Nardzewski_fixed...

    In functional analysis, a branch of mathematics, the Ryll-Nardzewski fixed-point theorem states that if is a normed vector space and is a nonempty convex subset of that is compact under the weak topology, then every group (or equivalently: every semigroup) of affine isometries of has at least one fixed point. (Here, a fixed point of a set of ...