enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    The distance from a point to a line, in the Euclidean plane [7] The distance from a point to a plane in three-dimensional Euclidean space [7] The distance between two lines in three-dimensional Euclidean space [8] The distance from a point to a curve can be used to define its parallel curve, another curve all of whose points have the same ...

  3. Distance from a point to a plane - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    In Euclidean space, the distance from a point to a plane is the distance between a given point and its orthogonal projection ... then the line segments from the ...

  4. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is the empty set if the line is parallel to the plane but outside it. Otherwise, the line cuts through the plane at a single point.

  5. Distance from a point to a line - Wikipedia

    en.wikipedia.org/.../Distance_from_a_point_to_a_line

    The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.

  6. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    The distance (more precisely the Euclidean distance) between two points of a Euclidean space is the norm of the translation vector that maps one point to the other; that is d ( P , Q ) = ‖ P Q → ‖ .

  7. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    defining the distance between two points P = (p x, p y) and Q = (q x, q y) is then known as the Euclidean metric, and other metrics define non-Euclidean geometries. In terms of analytic geometry, the restriction of classical geometry to compass and straightedge constructions means a restriction to first- and second-order equations, e.g., y = 2 ...

  8. Hesse normal form - Wikipedia

    en.wikipedia.org/wiki/Hesse_normal_form

    Distance from the origin O to the line E calculated with the Hesse normal form. Normal vector in red, line in green, point O shown in blue. In analytic geometry, the Hesse normal form (named after Otto Hesse) is an equation used to describe a line in the Euclidean plane, a plane in Euclidean space, or a hyperplane in higher dimensions.

  9. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point . It is an affine space , which includes in particular the concept of parallel lines .