enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Closed graph theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem...

    The Borel graph theorem, proved by L. Schwartz, shows that the closed graph theorem is valid for linear maps defined on and valued in most spaces encountered in analysis. [10] Recall that a topological space is called a Polish space if it is a separable complete metrizable space and that a Souslin space is the continuous image of a Polish space.

  3. Closed graph theorem - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem

    The closed graph theorem is an important result in functional analysis that guarantees that a closed linear operator is continuous under certain conditions. The original result has been generalized many times. A well known version of the closed graph theorems is the following.

  4. Closed graph property - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_property

    Let f : X → Y be defined by f(0) = 1 and f(x) = 0 for all x0. Then f : X → Y is continuous but its graph is not closed in X × Y. [4] If X is any space then the identity map Id : XX is continuous but its graph, which is the diagonal Gr Id := { (x, x) : xX }, is closed in X × X if and only if X is Hausdorff. [7]

  5. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function, is a member of the domain of such that () vanishes at ; that is, the function attains the value of 0 at , or equivalently, is a solution to the equation () =. [1] A "zero" of a function is thus an input value that produces an output ...

  6. Logic of graphs - Wikipedia

    en.wikipedia.org/wiki/Logic_of_graphs

    The graph shown here appears as a subgraph of an undirected graph if and only if models the sentence ,,,... In the first-order logic of graphs, a graph property is expressed as a quantified logical sentence whose variables represent graph vertices, with predicates for equality and adjacency testing.

  7. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    A critical point of a function of a single real variable, f (x), is a value x 0 in the domain of f where f is not differentiable or its derivative is 0 (i.e. ′ =). [2] A critical value is the image under f of a critical point.

  8. Cauchy's functional equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_functional_equation

    Cauchy's functional equation is the functional equation: (+) = + (). A function that solves this equation is called an additive function.Over the rational numbers, it can be shown using elementary algebra that there is a single family of solutions, namely : for any rational constant .

  9. Rouché's theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché's_theorem

    Notice that the condition |f(z)| > |h(z) − f(z)| means that for any z, the distance from f(z) to the origin is larger than the length of h(z) − f(z), which in the following picture means that for each point on the blue curve, the segment joining it to the origin is larger than the green segment associated with it.