enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adversarial machine learning - Wikipedia

    en.wikipedia.org/wiki/Adversarial_machine_learning

    A survey from May 2020 revealed practitioners' common feeling for better protection of machine learning systems in industrial applications. [2] Most machine learning techniques are mostly designed to work on specific problem sets, under the assumption that the training and test data are generated from the same statistical distribution . However ...

  3. List of text mining methods - Wikipedia

    en.wikipedia.org/wiki/List_of_text_mining_methods

    Different text mining methods are used based on their suitability for a data set. Text mining is the process of extracting data from unstructured text and finding patterns or relations. Below is a list of text mining methodologies. Centroid-based Clustering: Unsupervised learning method. Clusters are determined based on data points. [1]

  4. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".

  5. Extract, transform, load - Wikipedia

    en.wikipedia.org/wiki/Extract,_transform,_load

    An intrinsic part of the extraction involves data validation to confirm whether the data pulled from the sources has the correct/expected values in a given domain (such as a pattern/default or list of values). If the data fails the validation rules, it is rejected entirely or in part.

  6. Data preprocessing - Wikipedia

    en.wikipedia.org/wiki/Data_Preprocessing

    Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...

  7. Data preparation - Wikipedia

    en.wikipedia.org/wiki/Data_preparation

    Data preparation is the first step in data analytics projects and can include many discrete tasks such as loading data or data ingestion, data fusion, data cleaning, data augmentation, and data delivery. [2] The issues to be dealt with fall into two main categories:

  8. Feature engineering - Wikipedia

    en.wikipedia.org/wiki/Feature_engineering

    Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...

  9. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...