Search results
Results from the WOW.Com Content Network
It is a generalization of the subset sum problem. The input to the problem is a multiset of n integers and a positive integer m representing the number of subsets. The goal is to construct, from the input integers, some m subsets. The problem has several variants: Max-sum MSSP: for each subset j in 1,...,m, there is a capacity C j.
The most naïve algorithm would be to cycle through all subsets of n numbers and, for every one of them, check if the subset sums to the right number. The running time is of order O ( 2 n ⋅ n ) {\displaystyle O(2^{n}\cdot n)} , since there are 2 n {\displaystyle 2^{n}} subsets and, to check each subset, we need to sum at most n elements.
In computer science, the subset sum problem is an important problem in complexity theory and cryptography. The problem is this: given a set of integers, does the sum of some non-empty subset equal exactly zero? For example, given the set { −7, −3, −2, 5, 8}, the answer is yes because the subset { −3, −2, 5} sums to zero.
In the subset sum problem, the goal is to find a subset of S whose sum is a certain target number T given as input (the partition problem is the special case in which T is half the sum of S). In multiway number partitioning , there is an integer parameter k , and the goal is to decide whether S can be partitioned into k subsets of equal sum ...
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
The set {x: x is a prime number greater than 10} is a proper subset of {x: x is an odd number greater than 10} The set of natural numbers is a proper subset of the set of rational numbers; likewise, the set of points in a line segment is a proper subset of the set of points in a line.
In standard axiomatic set theory, by the principle of extensionality, two sets are equal if they have the same elements (that is, neither of them has an element not in the other). As a result, there can be only one set with no elements, hence the usage of "the empty set" rather than "an empty set".
The nested set model is a technique for representing nested set collections (also known as trees or hierarchies) in relational databases.. It is based on Nested Intervals, that "are immune to hierarchy reorganization problem, and allow answering ancestor path hierarchical queries algorithmically — without accessing the stored hierarchy relation".