Search results
Results from the WOW.Com Content Network
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
where θ is half the sum of any two opposite angles. (The choice of which pair of opposite angles is irrelevant: if the other two angles are taken, half their sum is 180° − θ. Since cos(180° − θ) = −cos θ, we have cos 2 (180° − θ) = cos 2 θ.) This more general formula is known as Bretschneider's formula.
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
In geometry, calculating the area of a triangle is an elementary problem encountered often in many different situations. The best known and simplest formula is T = b h / 2 , {\displaystyle T=bh/2,} where b is the length of the base of the triangle, and h is the height or altitude of the triangle.
Sum S of internal angles of a regular convex polygon with n sides: = Area A of a regular convex polygon with n sides and side length s: = Inradius r of a regular convex polygon with n sides and side length s:
For example, assuming the Earth is a sphere of radius 6371 km, the surface area of the arctic (north of the Arctic Circle, at latitude 66.56° as of August 2016 [7]) is 2π ⋅ 6371 2 | sin 90° − sin 66.56° | = 21.04 million km 2 (8.12 million sq mi), or 0.5 ⋅ | sin 90° − sin 66.56° | = 4.125% of the total surface area of the Earth.
Using a summed-area table (2.) of a 6×6 matrix (1.) to sum up a subrectangle of its values; each coloured spot highlights the sum inside the rectangle of that colour. A summed-area table is a data structure and algorithm for quickly and efficiently generating
Minkowski sums act linearly on the perimeter of two-dimensional convex bodies: the perimeter of the sum equals the sum of perimeters. Additionally, if K {\textstyle K} is (the interior of) a curve of constant width , then the Minkowski sum of K {\textstyle K} and of its 180° rotation is a disk.