enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Compression (physics) - Wikipedia

    en.wikipedia.org/wiki/Compression_(physics)

    Compression (physics) In mechanics, compression is the application of balanced inward ("pushing") forces to different points on a material or structure, that is, forces with no net sum or torque directed so as to reduce its size in one or more directions. [1] It is contrasted with tension or traction, the application of balanced outward ...

  3. Longitudinal wave - Wikipedia

    en.wikipedia.org/wiki/Longitudinal_wave

    A type of longitudinal wave: A plane pressure pulse wave. Longitudinal waves are waves in which the vibration of the medium is parallel to the direction the wave travels and displacement of the medium is in the same (or opposite) direction of the wave propagation. Mechanical longitudinal waves are also called compressional or compression waves ...

  4. Wave - Wikipedia

    en.wikipedia.org/wiki/Wave

    Wave. Surface waves in water showing water ripples. In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Periodic waves oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction ...

  5. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  6. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    Wave equation. The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.

  7. Rankine–Hugoniot conditions - Wikipedia

    en.wikipedia.org/wiki/Rankine–Hugoniot_conditions

    A schematic diagram of a shock wave situation with the density , velocity , and temperature indicated for each region.. The Rankine–Hugoniot conditions, also referred to as Rankine–Hugoniot jump conditions or Rankine–Hugoniot relations, describe the relationship between the states on both sides of a shock wave or a combustion wave (deflagration or detonation) in a one-dimensional flow in ...

  8. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air is about 343 m/s (1,125 ft/s; 1,235 km/h; 767 mph; 667 kn), or 1 km in 2.91 s or one mile in 4.69 s.

  9. Compressibility - Wikipedia

    en.wikipedia.org/wiki/Compressibility

    Thermodynamics. In thermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility[1] or, if the temperature is held constant, the isothermal compressibility[2]) is a measure of the instantaneous relative volume change of a fluid or solid as a response to a pressure (or mean stress) change.