Search results
Results from the WOW.Com Content Network
The Wittig reaction involves reaction of an aldehyde or ketone with a Wittig reagent (or phosphorane) of the type Ph 3 P=CHR to produce an alkene and Ph 3 P=O. The Wittig reagent is itself prepared easily from triphenylphosphine and an alkyl halide.
The Paternò–Büchi reaction, named after Emanuele Paternò and George Büchi, who established its basic utility and form, [1] [2] is a photochemical reaction, specifically a 2+2 photocycloaddition, which forms four-membered oxetane rings from an excited carbonyl and reacting with an alkene.
Illustrative of the bromination of an alkene is the route to the anesthetic halothane from trichloroethylene: [6] Iodination and bromination can be effected by the addition of iodine and bromine to alkenes. The reaction, which conveniently proceeds with the discharge of the color of I 2 and Br 2, is the basis of the analytical method.
A Tetrazine-Alkene reaction between a generalized tetrazine and a strained, trans-cyclooctene. Strained cyclooctenes and other activated alkenes react with tetrazines in an inverse electron-demand Diels-Alder followed by a retro [4+2] cycloaddition (see figure). [41]
The reverse reaction of RCM, ring-opening metathesis, can likewise be favored by a large excess of an alpha-olefin, often styrene. Ring-opening metathesis usually involves a strained alkene (often a norbornene) and the release of ring strain drives the reaction. Ring-closing metathesis, conversely, usually involves the formation of a five- or ...
There are two types of alpha-olefins, branched and linear (or normal). The chemical properties of branched alpha-olefins with a branch at either the second (vinylidene) or the third carbon number are significantly different from the properties of linear alpha-olefins and those with branches on the fourth carbon number and further from the start of the chain.
In organic chemistry, the ene reaction (also known as the Alder-ene reaction by its discoverer Kurt Alder in 1943) is a chemical reaction between an alkene with an allylic hydrogen (the ene) and a compound containing a multiple bond (the enophile), in order to form a new σ-bond with migration of the ene double bond and 1,5 hydrogen shift.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.