Search results
Results from the WOW.Com Content Network
Only if the light intensity is above a plant specific value, called the compensation point the plant assimilates more carbon and releases more oxygen by photosynthesis than it consumes by cellular respiration for its own current energy demand. Photosynthesis measurement systems are not designed to directly measure the amount of light absorbed ...
The simple carbon sugars photosynthesis produces are then used to form other organic compounds, such as the building material cellulose, the precursors for lipid and amino acid biosynthesis, or as a fuel in cellular respiration. The latter occurs not only in plants but also in animals when the carbon and energy from plants is passed through a ...
To do this, it must release the absorbed energy. This can happen in various ways. The extra energy can be converted into molecular motion and lost as heat, or re-emitted by the electron as light (fluorescence). The energy, but not the electron itself, may be passed onto another molecule; this is called resonance energy transfer.
For premium support please call: 800-290-4726 more ways to reach us
C4 carbon fixation evolved to circumvent photorespiration, but can occur only in certain plants native to very warm or tropical climates—corn, for example. Furthermore, RuBisCOs catalyzing the light-independent reactions of photosynthesis generally exhibit an improved specificity for CO 2 relative to O 2, in order to minimize the oxygenation ...
Photoautotrophs are organisms that can utilize light energy from sunlight and elements (such as carbon) from inorganic compounds to produce organic materials needed to sustain their own metabolism (i.e. autotrophy). Such biological activities are known as photosynthesis, and examples of such organisms include plants, algae and cyanobacteria.
Oxygenic photosynthesis can be performed by plants and cyanobacteria; cyanobacteria are believed to be the progenitors of the photosystem-containing chloroplasts of eukaryotes. Photosynthetic bacteria that cannot produce oxygen have only one photosystem, which is similar to either PSI or PSII.
The fact that a reaction is thermodynamically possible does not mean that it will actually occur. A mixture of hydrogen gas and oxygen gas does not spontaneously ignite. It is necessary either to supply an activation energy or to lower the intrinsic activation energy of the system, in order to make most biochemical reactions proceed at a useful ...