enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Hyperbola: the midpoints of parallel chords lie on a line. Hyperbola: the midpoint of a chord is the midpoint of the corresponding chord of the asymptotes. The midpoints of parallel chords of a hyperbola lie on a line through the center (see diagram). The points of any chord may lie on different branches of the hyperbola.

  3. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).

  4. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    These points form a line, and y = x is said to be the equation for this line. In general, linear equations involving x and y specify lines, quadratic equations specify conic sections, and more complicated equations describe more complicated figures. [17] Usually, a single equation corresponds to a curve on the plane.

  5. Dirichlet hyperbola method - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_hyperbola_method

    In the Cartesian plane, these pairs lie on a hyperbola, and when the double sum is fully expanded, there is a bijection between the terms of the sum and the lattice points in the first quadrant on the hyperbolas of the form xy = k, where k runs over the integers 1 ≤ k ≤ n: for each such point (x,y), the sum contains a term g(x)h(y), and ...

  6. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Various pseudospheres – surfaces with constant negative Gaussian curvature – can be embedded in 3-D space under the standard Euclidean metric, and so can be made into tangible models. Of these, the tractoid (or pseudosphere) is the best known; using the tractoid as a model of the hyperbolic plane is analogous to using a cone or cylinder as ...

  7. Hyperbolic sector - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_sector

    A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola.

  8. Hyperbolic coordinates - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_coordinates

    Euler’s work made the natural logarithm a standard mathematical tool, and elevated mathematics to the realm of transcendental functions. The hyperbolic coordinates are formed on the original picture of G. de Saint-Vincent, which provided the quadrature of the hyperbola, and transcended the limits of algebraic functions.

  9. Hyperbolic angle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_angle

    The curve represents xy = 1. A hyperbolic angle has magnitude equal to the area of the corresponding hyperbolic sector, which is in standard position if a = 1. In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane.