Search results
Results from the WOW.Com Content Network
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry.As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement.
Geometry of Complex Numbers is an undergraduate textbook on geometry, whose topics include circles, the complex plane, inversive geometry, and non-Euclidean geometry. It was written by Hans Schwerdtfeger , and originally published in 1962 as Volume 13 of the Mathematical Expositions series of the University of Toronto Press .
Journey into Geometries is a book on non-Euclidean geometry. It was written by Hungarian-Australian mathematician Márta Svéd and published in 1991 by the Mathematical Association of America in their MAA Spectrum book series.
Consequently, hyperbolic geometry has been called Bolyai-Lobachevskian geometry, as both mathematicians, independent of each other, are the basic authors of non-Euclidean geometry. Gauss mentioned to Bolyai's father, when shown the younger Bolyai's work, that he had developed such a geometry several years before, [ 64 ] though he did not publish.
To explain accurately the relationship between affine and Euclidean geometry, we now need to pin down the group of Euclidean geometry within the affine group. The Euclidean group is in fact (using the previous description of the affine group) the semi-direct product of the orthogonal (rotation and reflection) group with the translations.
Non-euclidean geometries. Add languages. Add links. Article; Talk; ... Download QR code; Print/export Download as PDF; Printable version; In other projects
Egyptian geometry; Ancient Greek geometry Euclidean geometry. Pythagorean theorem; Euclid's Elements; Measurement of a Circle; Indian mathematics. Bakhshali manuscript; Modern geometry History of analytic geometry. History of the Cartesian coordinate system; History of non-Euclidean geometry; History of topology; History of algebraic geometry ...
The theorems of absolute geometry hold in hyperbolic geometry, which is a non-Euclidean geometry, as well as in Euclidean geometry. [9] Absolute geometry is inconsistent with elliptic geometry: in that theory, there are no parallel lines at all, but it is a theorem of absolute geometry that parallel lines do exist. However, it is possible to ...