Search results
Results from the WOW.Com Content Network
Absorption of dietary iron in iron salt form (as in most supplements) varies somewhat according to the body's need for iron, and is usually between 10% and 20% of iron intake. Absorption of iron from animal products, and some plant products, is in the form of heme iron, and is more efficient, allowing absorption of from 15% to 35% of intake.
Human iron metabolism is the set of chemical reactions that maintain human homeostasis of iron at the systemic and cellular level. Iron is both necessary to the body and potentially toxic. Controlling iron levels in the body is a critically important part of many aspects of human health and disease.
Iron plays an essential role in marine systems and can act as a limiting nutrient for planktonic activity. [200] Because of this, too much of a decrease in iron may lead to a decrease in growth rates in phytoplanktonic organisms such as diatoms. [201] Iron can also be oxidized by marine microbes under conditions that are high in iron and low in ...
One major trigger for the production of many ferritins is the mere presence of iron; [9] an exception is the yolk ferritin of Lymnaea sp., which lacks an iron-responsive unit. [12] Free iron is toxic to cells as it acts as a catalyst in the formation of free radicals from reactive oxygen species via the Fenton reaction. [17]
A few elements have been found to have a pharmacologic function in humans (and possibly in other living things as well; the phenomenon has not been widely studied). In these, a normally nonessential element can treat a disease (often a micronutrient deficiency). An example is fluorine, which reduces the effects of iron deficiency in rats.
The five major minerals in the human body are calcium, phosphorus, potassium, sodium, and magnesium. [2] The remaining minerals are called "trace elements". The generally accepted trace elements are iron, chlorine, cobalt, copper, zinc, manganese, molybdenum, iodine, selenium, [5] and bromine; [6] there is some evidence that there may be more.
Roughly 5 grams of iron are present in the human body and is the most abundant trace metal. [1] It is absorbed in the intestine as heme or non-heme iron depending on the food source. Heme iron is derived from the digestion of hemoproteins in meat. [4] Non-heme iron is mainly derived from plants and exist as iron(II) or iron(III) ions. [4]
Iron deficiency, or sideropenia, is the state in which a body lacks enough iron to supply its needs. Iron is present in all cells in the human body and has several vital functions, such as carrying oxygen to the tissues from the lungs as a key component of the hemoglobin protein, acting as a transport medium for electrons within the cells in the form of cytochromes, and facilitating oxygen ...