enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    t 1 and t 2 are times when the impulse begins and ends, respectively, m is the mass of the object, v 2 is the final velocity of the object at the end of the time interval, and; v 1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT −1) as momentum.

  3. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  5. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    Multiplying by the operator [S], the formula for the velocity v P takes the form: = [] + ˙ = / +, where the vector ω is the angular velocity vector obtained from the components of the matrix [Ω]; the vector / =, is the position of P relative to the origin O of the moving frame M; and = ˙, is the velocity of the origin O.

  6. Angular velocity - Wikipedia

    en.wikipedia.org/wiki/Angular_velocity

    The angular velocity of the particle at P with respect to the origin O is determined by the perpendicular component of the velocity vector v.. In the simplest case of circular motion at radius , with position given by the angular displacement () from the x-axis, the orbital angular velocity is the rate of change of angle with respect to time: =.

  7. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Unprimed quantities refer to position, velocity and acceleration in one frame F; primed quantities refer to position, velocity and acceleration in another frame F' moving at translational velocity V or angular velocity Ω relative to F. Conversely F moves at velocity (—V or —Ω) relative to F'. The situation is similar for relative ...

  8. Angular acceleration - Wikipedia

    en.wikipedia.org/wiki/Angular_acceleration

    In physics, angular acceleration (symbol α, alpha) is the time rate of change of angular velocity.Following the two types of angular velocity, spin angular velocity and orbital angular velocity, the respective types of angular acceleration are: spin angular acceleration, involving a rigid body about an axis of rotation intersecting the body's centroid; and orbital angular acceleration ...

  9. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]