enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    If the concentration of a reactant remains constant (because it is a catalyst, or because it is in great excess with respect to the other reactants), its concentration can be included in the rate constant, leading to a pseudo–first-order (or occasionally pseudo–second-order) rate equation. For a typical second-order reaction with rate ...

  3. Order of accuracy - Wikipedia

    en.wikipedia.org/wiki/Order_of_accuracy

    Consider , the exact solution to a differential equation in an appropriate normed space (, | | | |). Consider a numerical approximation u h {\displaystyle u_{h}} , where h {\displaystyle h} is a parameter characterizing the approximation, such as the step size in a finite difference scheme or the diameter of the cells in a finite element method .

  4. Equalization (audio) - Wikipedia

    en.wikipedia.org/wiki/Equalization_(audio)

    [a] The bass and treble controls in a hi-fi system are each a first-order filter in which the balance of frequencies above and below a point are varied using a single knob. A special case of first-order filters is a first-order high-pass or low-pass filter in which the 6 dB per octave cut of low or high frequencies extends indefinitely.

  5. Butterworth filter - Wikipedia

    en.wikipedia.org/wiki/Butterworth_filter

    A first-order filter's response rolls off at −6 dB per octave (−20 dB per decade) (all first-order lowpass filters have the same normalized frequency response). A second-order filter decreases at −12 dB per octave, a third-order at −18 dB and so on.

  6. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    In fact, however, the observed reaction rate is second-order in NO 2 and zero-order in CO, [5] with rate equation r = k[NO 2] 2. This suggests that the rate is determined by a step in which two NO 2 molecules react, with the CO molecule entering at another, faster, step. A possible mechanism in two elementary steps that explains the rate ...

  7. Reduction of order - Wikipedia

    en.wikipedia.org/wiki/Reduction_of_order

    The method of reduction of order is used to obtain a second linearly independent solution to this differential equation using our one known solution. To find a second solution we take as a guess y 2 ( x ) = v ( x ) y 1 ( x ) {\displaystyle y_{2}(x)=v(x)y_{1}(x)} where v ( x ) {\displaystyle v(x)} is an unknown function to be determined.

  8. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    For this reason, the Euler method is said to be a first-order method, while the midpoint method is second order. We can extrapolate from the above table that the step size needed to get an answer that is correct to three decimal places is approximately 0.00001, meaning that we need 400,000 steps.

  9. Lindemann mechanism - Wikipedia

    en.wikipedia.org/wiki/Lindemann_mechanism

    The steady-state rate equation is of mixed order and predicts that a unimolecular reaction can be of either first or second order, depending on which of the two terms in the denominator is larger. At sufficiently low pressures, k − 1 [ M ] ≪ k 2 {\displaystyle k_{-1}[{\ce {M}}]\ll k_{2}} so that d [ P ] / d t = k 1 [ A ] [ M ...

  1. Related searches 2nd order to first order rate eq table chart generator full version windows 10

    2nd order to first order rate2nd order to 1st order
    rate equation 2nd orderpseudo first order rate equation