enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uncertainty quantification - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_quantification

    Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.

  3. Conformal prediction - Wikipedia

    en.wikipedia.org/wiki/Conformal_prediction

    Conformal prediction (CP) is a machine learning framework for uncertainty quantification that produces statistically valid prediction regions (prediction intervals) for any underlying point predictor (whether statistical, machine, or deep learning) only assuming exchangeability of the data. CP works by computing nonconformity scores on ...

  4. Sensitivity analysis - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_analysis

    Identify the model output to be analysed (the target of interest should ideally have a direct relation to the problem tackled by the model). Run the model a number of times using some design of experiments, [15] dictated by the method of choice and the input uncertainty. Using the resulting model outputs, calculate the sensitivity measures of ...

  5. Quantification (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Quantification_(machine...

    In machine learning and data mining, quantification (variously called learning to quantify, or supervised prevalence estimation, or class prior estimation) is the task of using supervised learning in order to train models (quantifiers) that estimate the relative frequencies (also known as prevalence values) of the classes of interest in a sample of unlabelled data items.

  6. Quantification of margins and uncertainties - Wikipedia

    en.wikipedia.org/wiki/Quantification_of_margins...

    Quantification of Margins and Uncertainty (QMU) is a decision support methodology for complex technical decisions. QMU focuses on the identification, characterization, and analysis of performance thresholds and their associated margins for engineering systems that are evaluated under conditions of uncertainty, particularly when portions of those results are generated using computational ...

  7. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    A machine learning model is a type of ... Bayesian approaches in order to incorporate ignorance and uncertainty quantification. ... architecture search, and ...

  8. Heidelberg Institute for Theoretical Studies - Wikipedia

    en.wikipedia.org/wiki/Heidelberg_Institute_for...

    Data Mining and Uncertainty Quantification (DMQ) The Data Mining and Uncertainty Quantification group makes use of technology from the fields of High Performance Computing and Uncertainty Quantification in order to quantify uncertainties in large data sets towards reliable insights in Data Mining. [5] Groups and Geometry (GRG)

  9. Prognostics - Wikipedia

    en.wikipedia.org/wiki/Prognostics

    Data-driven prognostics usually use pattern recognition and machine learning techniques to detect changes in system states. [3] The classical data-driven methods for nonlinear system prediction include the use of stochastic models such as the autoregressive (AR) model, the threshold AR model, the bilinear model, the projection pursuit, the multivariate adaptive regression splines, and the ...