enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Clause (logic) - Wikipedia

    en.wikipedia.org/wiki/Clause_(logic)

    In logic, a clause is a propositional formula formed from a finite collection of literals (atoms or their negations) and logical connectives.A clause is true either whenever at least one of the literals that form it is true (a disjunctive clause, the most common use of the term), or when all of the literals that form it are true (a conjunctive clause, a less common use of the term).

  3. Conjunctive normal form - Wikipedia

    en.wikipedia.org/wiki/Conjunctive_normal_form

    In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs.

  4. Propositional formula - Wikipedia

    en.wikipedia.org/wiki/Propositional_formula

    The predicate calculus goes a step further than the propositional calculus to an "analysis of the inner structure of propositions" [4] It breaks a simple sentence down into two parts (i) its subject (the object (singular or plural) of discourse) and (ii) a predicate (a verb or possibly verb-clause that asserts a quality or attribute of the object(s)).

  5. Horn clause - Wikipedia

    en.wikipedia.org/wiki/Horn_clause

    In mathematical logic and logic programming, a Horn clause is a logical formula of a particular rule-like form that gives it useful properties for use in logic programming, formal specification, universal algebra and model theory. Horn clauses are named for the logician Alfred Horn, who first pointed out their significance in 1951. [1]

  6. Sentence (mathematical logic) - Wikipedia

    en.wikipedia.org/wiki/Sentence_(mathematical_logic)

    For the interpretation of formulas, consider these structures: the positive real numbers, the real numbers, and complex numbers. The following example in first-order logic (=) is a sentence. This sentence means that for every y, there is an x such that =.

  7. Horn-satisfiability - Wikipedia

    en.wikipedia.org/wiki/Horn-satisfiability

    Horn-satisfiability and Horn clauses are named after Alfred Horn. [1] A Horn clause is a clause with at most one positive literal, called the head of the clause, and any number of negative literals, forming the body of the clause. A Horn formula is a propositional formula formed by conjunction of Horn clauses.

  8. Logical connective - Wikipedia

    en.wikipedia.org/wiki/Logical_connective

    In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. Connectives can be used to connect logical formulas. Connectives can be used to connect logical formulas.

  9. Literal (mathematical logic) - Wikipedia

    en.wikipedia.org/wiki/Literal_(mathematical_logic)

    In mathematical logic, a literal is an atomic formula (also known as an atom or prime formula) or its negation. [1] [2] The definition mostly appears in proof theory (of classical logic), e.g. in conjunctive normal form and the method of resolution. Literals can be divided into two types: [2] A positive literal is just an atom (e.g., ).