enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Most probable number - Wikipedia

    en.wikipedia.org/wiki/Most_probable_number

    Downloadable EXCEL program for the determination of the Most Probable Numbers (MPN), their standard deviations, confidence bounds and rarity values according to Jarvis, B., Wilrich, C., and P.-T. Wilrich: Reconsideration of the derivation of Most Probable Numbers, their standard deviations, confidence bounds and rarity values.

  3. Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_distribution

    In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]

  4. Zero-truncated Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Zero-truncated_Poisson...

    This distribution is also known as the conditional Poisson distribution [1] or the positive Poisson distribution. [2] It is the conditional probability distribution of a Poisson-distributed random variable, given that the value of the random variable is not zero. Thus it is impossible for a ZTP random variable to be zero.

  5. Stochastic simulation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_simulation

    The exponential distribution is popular, for example, in queuing theory when we want to model the time we have to wait until a certain event takes place. Examples include the time until the next client enters the store, the time until a certain company defaults or the time until some machine has a defect. [4]

  6. Fixed-effect Poisson model - Wikipedia

    en.wikipedia.org/wiki/Fixed-effect_Poisson_model

    Even though Poisson models are inherently nonlinear, the use of the linear index and the exponential link function lead to multiplicative separability, more specifically [2] E[y it ∨ x i1... x iT, c i] = m(x it, c i, b 0) = exp(c i + x it b 0) = a i exp(x it b 0) = μ ti (1) This formula looks very similar to the standard Poisson ...

  7. Poisson regression - Wikipedia

    en.wikipedia.org/wiki/Poisson_regression

    In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters.

  8. (a,b,0) class of distributions - Wikipedia

    en.wikipedia.org/wiki/(a,b,0)_class_of_distributions

    The (a,b,0) class of distributions is also known as the Panjer, [1] [2] the Poisson-type or the Katz family of distributions, [3] [4] and may be retrieved through the Conway–Maxwell–Poisson distribution. Only the Poisson, binomial and negative binomial distributions satisfy the full form of this

  9. Compound Poisson process - Wikipedia

    en.wikipedia.org/wiki/Compound_Poisson_process

    The jumps arrive randomly according to a Poisson process and the size of the jumps is also random, with a specified probability distribution. To be precise, a compound Poisson process, parameterised by a rate λ > 0 {\displaystyle \lambda >0} and jump size distribution G , is a process { Y ( t ) : t ≥ 0 } {\displaystyle \{\,Y(t):t\geq 0 ...