Search results
Results from the WOW.Com Content Network
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.
Euclid's axiomatic approach and constructive methods were widely influential. Many of Euclid's propositions were constructive, demonstrating the existence of some figure by detailing the steps he used to construct the object using a compass and straightedge. His constructive approach appears even in his geometry's postulates, as the first and ...
If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry.
Euclid (/ ˈ j uː k l ɪ d /; Ancient Greek: Εὐκλείδης; fl. 300 BC) was an ancient Greek mathematician active as a geometer and logician. [2] Considered the "father of geometry", [3] he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century.
Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions from these. Although many of Euclid's results had been stated by earlier mathematicians, [7] Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. [8]
Euclid introduced certain axioms, or postulates, expressing primary or self-evident properties of points, lines, and planes. [39] He proceeded to rigorously deduce other properties by mathematical reasoning. The characteristic feature of Euclid's approach to geometry was its rigor, and it has come to be known as axiomatic or synthetic geometry ...
More formally, the only permissible constructions are those granted by the first three postulates of Euclid's Elements. It turns out to be the case that every point constructible using straightedge and compass may also be constructed using compass alone, or by straightedge alone if given a single circle and its center.
The axiomatic foundation of Euclidean geometry can be dated back to the books known as Euclid's Elements (circa 300 B.C.). These five initial axioms (called postulates by the ancient Greeks) are not sufficient to establish Euclidean geometry. Many mathematicians have produced complete sets of axioms which do establish Euclidean geometry.