Search results
Results from the WOW.Com Content Network
Conical spiral with an archimedean spiral as floor projection Floor projection: Fermat's spiral Floor projection: logarithmic spiral Floor projection: hyperbolic spiral. In mathematics, a conical spiral, also known as a conical helix, [1] is a space curve on a right circular cone, whose floor projection is a plane spiral.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The slope of a circular helix is commonly defined as the ratio of the circumference of the circular cylinder that it spirals around, and its pitch (the height of one complete helix turn). A conic helix, also known as a conic spiral, may be defined as a spiral on a conic surface, with the distance to the apex an exponential function of the angle ...
An Archimedean spiral (black), a helix (green), and a conical spiral (red) Two major definitions of "spiral" in the American Heritage Dictionary are: [5]. a curve on a plane that winds around a fixed center point at a continuously increasing or decreasing distance from the point.
A ruled surface can be described as the set of points swept by a moving straight line. For example, a cone is formed by keeping one point of a line fixed whilst moving another point along a circle. A surface is doubly ruled if through every one of its points there are two distinct lines that lie on the surface.
Pilots use aeronautical charts based on LCC because a straight line drawn on a Lambert conformal conic projection approximates a great-circle route between endpoints for typical flight distances. The US systems of VFR (visual flight rules) sectional charts and terminal area charts are drafted on the LCC with standard parallels at 33°N and 45 ...
Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus , Stokes' theorem and the divergence theorem , are frequently given in a parametric form.
A parametric C r-curve or a C r-parametrization is a vector-valued function: that is r-times continuously differentiable (that is, the component functions of γ are continuously differentiable), where , {}, and I is a non-empty interval of real numbers.