Search results
Results from the WOW.Com Content Network
A diagonal matrix where the diagonal elements are either +1 or −1. Single-entry matrix: A matrix where a single element is one and the rest of the elements are zero. Skew-Hermitian matrix: A square matrix which is equal to the negative of its conjugate transpose, A * = −A. Skew-symmetric matrix
Let A be an m × n matrix with real or complex entries. [a] If I is a subset of size r of {1, ..., m} and J is a subset of size s of {1, ..., n}, then the (I, J )-submatrix of A, written A I, J , is the submatrix formed from A by retaining only those rows indexed by I and those columns indexed by J.
In computer science, a composite data type or compound data type is a data type that consists of programming language scalar data types and other composite types that may be heterogeneous and hierarchical in nature.
In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...
Most commonly, a matrix over a field F is a rectangular array of elements of F. [3] [4] A real matrix and a complex matrix are matrices whose entries are respectively real numbers or complex numbers. More general types of entries are discussed below. For instance, this is a real matrix:
Among other things, this feature allows a single iterative statement to process arbitrarily many elements of an array. For that reason, the elements of an array data structure are required to have the same size and should use the same data representation. The set of valid index tuples and the addresses of the elements (and hence the element ...
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.
A band matrix with k 1 = k 2 = 0 is a diagonal matrix, with bandwidth 0. A band matrix with k 1 = k 2 = 1 is a tridiagonal matrix, with bandwidth 1. For k 1 = k 2 = 2 one has a pentadiagonal matrix and so on. Triangular matrices. For k 1 = 0, k 2 = n−1, one obtains the definition of an upper triangular matrix