Search results
Results from the WOW.Com Content Network
The self-ionization of water (also autoionization of water, autoprotolysis of water, autodissociation of water, or simply dissociation of water) is an ionization reaction in pure water or in an aqueous solution, in which a water molecule, H 2 O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a hydroxide ion, OH −.
One of the two oxygen groups on the carboxylic acid are derived from a water molecule and the amine (or ammonia) gains the hydrogen ion. The hydrolysis of peptides gives amino acids. Many polyamide polymers such as nylon 6,6 hydrolyze in the presence of strong acids. The process leads to depolymerization. For this reason nylon products fail by ...
This process can be understood as a process by which a bounded electron, through the absorption of more than one photon from the laser field, is ionized. This picture is generally known as multiphoton ionization (MPI). Keldysh [28] modeled the MPI process as a transition of the electron from the ground state of the atom to the Volkov states. [29]
In the presence of oxygen, the fatty acids will undergo oxidation. Lipid oxidation is a chain reaction process in which oxygen attacks the double bond in a fatty acid, to yield peroxide linkages. Eventually, the process will produce aldehydes and ketones. [4] Initiation + + Propagation
Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into ATP, and then release waste products. [1] Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]].
Hydrogen gas released in this way can be used as hydrogen fuel, but must be kept apart from the oxygen as the mixture would be extremely explosive. Separately pressurised into convenient 'tanks' or 'gas bottles', hydrogen can be used for oxyhydrogen welding and other applications, as the hydrogen / oxygen flame can reach approximately 2,800°C.
In thermolysis, water molecules split into hydrogen and oxygen. For example, at 2,200 °C (2,470 K; 3,990 °F) about three percent of all H 2 O are dissociated into various combinations of hydrogen and oxygen atoms, mostly H, H 2, O, O 2, and OH. Other reaction products like H 2 O 2 or HO 2 remain minor. At the very high temperature of 3,000 ...
2 (absorbed from air or water) to form glucose and release oxygen. [108] All living cells use such fuels and oxidize the hydrogen and carbon to capture the sun's energy and reform water and CO 2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H +