Search results
Results from the WOW.Com Content Network
In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.
The sine function (blue) is closely approximated by its Taylor polynomial of degree 7 (pink) for a full period centered at the origin. The Taylor polynomials for ln(1 + x) only provide accurate approximations in the range −1 < x ≤ 1. For x > 1, Taylor polynomials of higher degree provide worse approximations.
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.
In this approximation, trigonometric functions can be expressed as linear functions of the angles. Gaussian optics applies to systems in which all the optical surfaces are either flat or are portions of a sphere. In this case, simple explicit formulae can be given for parameters of an imaging system such as focal distance, magnification and ...
In the zeroth-order example above, the quantity "a few" was given, but in the first-order example, the number "4" is given. A first-order approximation of a function (that is, mathematically determining a formula to fit multiple data points) will be a linear approximation, straight line with a slope: a polynomial of degree 1. For example:
Where n! denotes the factorial of n, and R n (x) is a remainder term, denoting the difference between the Taylor polynomial of degree n and the original function. Following is the process to derive an approximation for the first derivative of the function f by first truncating the Taylor polynomial plus remainder: f ( x 0 + h ) = f ( x 0 ) + f ...
By Leah Douglas and Julie Steenhuysen (Reuters) -California's public health department reported a possible case of bird flu in a child with mild respiratory symptoms on Tuesday, but said there was ...
The objective is to make the approximation as close as possible to the actual function, typically with an accuracy close to that of the underlying computer's floating point arithmetic. This is accomplished by using a polynomial of high degree, and/or narrowing the domain over which the polynomial has to approximate the function. Narrowing the ...