Search results
Results from the WOW.Com Content Network
This mapping is known as a Riemann mapping. [1] Intuitively, the condition that be simply connected means that does not contain any “holes”. The fact that is biholomorphic implies that it is a conformal map and therefore angle-preserving. Such a map may be interpreted as preserving the shape of any sufficiently small figure, while possibly ...
Such a mapping defines both a first fundamental form and second fundamental form. The Laplacian (also called tension field) is defined via the second fundamental form, and its vanishing is the condition for the map to be harmonic. The definitions extend without modification to the setting of pseudo-Riemannian manifolds.
Riemannian manifolds are named after German mathematician Bernhard Riemann, who first conceptualized them. Formally, a Riemannian metric (or just a metric) on a smooth manifold is a choice of inner product for each tangent space of the manifold. A Riemannian manifold is a smooth manifold together with a Riemannian metric.
There are several equivalent definitions of a Riemann surface. A Riemann surface X is a connected complex manifold of complex dimension one. This means that X is a connected Hausdorff space that is endowed with an atlas of charts to the open unit disk of the complex plane: for every point x ∈ X there is a neighbourhood of x that is homeomorphic to the open unit disk of the complex plane, and ...
Since du is non-zero and the square of the Hodge star operator is −1 on 1-forms, du and dv must be linearly independent, so that u and v give local isothermal coordinates. The existence of isothermal coordinates can be proved by other methods, for example using the general theory of the Beltrami equation , as in Ahlfors (2006) , or by direct ...
The illegal Guatemalan migrant charged with torching a sleeping straphanger to death on a Brooklyn subway train was a heavy drinker who chain-smoked K2, pals at the homeless shelter where he was ...
In mathematics, the Cartan–Ambrose–Hicks theorem is a theorem of Riemannian geometry, according to which the Riemannian metric is locally determined by the Riemann curvature tensor, or in other words, behavior of the curvature tensor under parallel translation determines the metric.
As Elon Musk and Vivek Ramaswamy make sweeping promises to cut $2 trillion dollars of federal spending, senior House Republicans have raised concerns with GOP leadership that efforts to cut ...