Search results
Results from the WOW.Com Content Network
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...
According to the change-of-variables formula for Lebesgue integration, [21] combined with the law of the unconscious statistician, [22] it follows that [] = for any absolutely continuous random variable X. The above discussion of continuous random variables is thus a special case of the general Lebesgue theory, due to the fact that every ...
A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known.
An absolutely continuous random variable is a random variable whose probability distribution is absolutely continuous. There are many examples of absolutely continuous probability distributions: normal , uniform , chi-squared , and others .
In the simplest case, where the random variable X takes on countably many values (so that its distribution is discrete), the proof is particularly simple, and holds without modification if X is a discrete random vector or even a discrete random element. The case of a continuous random variable is more subtle, since the proof in generality ...
In probability theory and statistics, the Weibull distribution / ˈ w aɪ b ʊ l / is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.
With reference to a continuous and strictly monotonic cumulative distribution function (c.d.f.) : [,] of a random variable X, the quantile function : [,] maps its input p to a threshold value x so that the probability of X being less or equal than x is p.
A mixed random variable is a random variable whose cumulative distribution function is neither discrete nor everywhere-continuous. [10] It can be realized as a mixture of a discrete random variable and a continuous random variable; in which case the CDF will be the weighted average of the CDFs of the component variables. [10]